• Users Online: 264
  • Home
  • Print this page
  • Email this page
Home Current issue Ahead of print Search About us Editorial board Archives Submit article Instructions Subscribe Contacts Login 

 Table of Contents  
ORIGINAL ARTICLE
Year : 2014  |  Volume : 107  |  Issue : 2  |  Page : 106-112

Corneal intrastromal MyoRing implantation in keratoconus treatment


Department of Ophthalmology, Benha University, Benha, Egypt

Date of Submission13-Dec-2013
Date of Acceptance03-Mar-2014
Date of Web Publication12-Sep-2014

Correspondence Address:
Ahmed M Saeed
MD, Zayed Tower, Elsouk Eltogary Street, El-kanater elkhayria, Elqalyobia, Benha
Egypt
Login to access the Email id

Source of Support: None, Conflict of Interest: None


Rights and PermissionsRights and Permissions
  Abstract 

Purpose
The aim of this study was to evaluate the efficacy and safety of MyoRing implantation into a corneal stromal pocket using the corneal intrastromal implantation system for keratoconus (KC) treatment.
Patients and methods
This nonrandomized prospective clinical trial included 22 eyes of 22 KC patients. The MyoRing was inserted into a 300-μm corneal pocket centered on the corneal reflex. Follow-up for 6 months with measurement of uncorrected visual acuity (UCVA) and best-corrected visual acuity (BCVA), and Pentacam corneal imaging was performed. Any surgical complication was reported.
Results
There was a high statistically significant improvement in UCVA, BCVA, K1 , K2 , and Km when comparing preoperative with all postoperative values (P < 0.001). The mean UCVA increased from 0.12 ± 0.17 to 0.5 ± 0.24 and the mean BCVA from 0.3 ± 0.143 to 0.7 ± 0.22 at 6 months postoperatively (P < 0.001). The mean K1 , K2 , and Km values decreased from 48.45 ± 3.79, 54.46 ± 3.94, and 51.31 ± 3.56 to 45.79 ± 2.97, 42.56 ± 3.17, and 49.07 ± 3.33, respectively, at 6 months postoperatively. Meanwhile, no statistically significant changes in the mean corneal astigmatism and thinnest location values were reported (P > 0.05). Three patients with severe KC underwent position adjustment of the implant. No detectable intraoperative or postoperative complications were observed in any of the cases.
Conclusion
MyoRing intrastromal implantation could represent an efficient, safe, modifiable, and simple therapeutic option for KC management.

Keywords: corneal intrastromal implantation system, keratoconus, MyoRing, pentacam


How to cite this article:
Saeed AM. Corneal intrastromal MyoRing implantation in keratoconus treatment . J Egypt Ophthalmol Soc 2014;107:106-12

How to cite this URL:
Saeed AM. Corneal intrastromal MyoRing implantation in keratoconus treatment . J Egypt Ophthalmol Soc [serial online] 2014 [cited 2017 Aug 22];107:106-12. Available from: http://www.jeos.eg.net/text.asp?2014/107/2/106/140647


  Introduction Top


Keratoconus (KC) is a progressive disorder with conical deformity of the cornea. It is characterized by corneal thinning that induces irregular astigmatism, myopia, and protrusion, resulting in mild to marked impairment in the quality of vision [1]. It is usually bilateral; the apex of the cone is usually centered just below the visual axis [2]. It is the most common primary ectasia and usually occurs in the second decade of life and affects both sexes and all ethnicities. The estimated prevalence in the general population is 54/100 000 [3].

The etiology of KC is unknown and most likely multifactorial, and includes keratocyte apoptosis [4], biochemical abnormalities [5], changes in collagen orientation and distribution [6], genetics and hereditary [7], association with genetic disorders such as Down's and Marfan syndromes [8], and the microtrauma associated with eye rubbing [2].

Pentacam is an elevation-based diagnostic imaging system that is considered highly accurate in detecting KC and KC suspects [9]. We used a new surgical system referred to as the corneal intrastromal implantation system (CISIS), in which the MyoRing flexible full-ring implant is inserted into a corneal pocket using a high-precession microkeratome (PocketMaker microkeratome); this is a new type of continuous ring implant (MyoRing) having a-priori conflicting features, such as rigidity and flexibility, allowing safe, easy, and effective treatment of myopia, KC, and post-LASIK keratectasia [10].


  Aim of the work Top


The aim of this study was to evaluate the efficacy and safety of implanting a complete ring (MyoRing) into a corneal pocket, known as the corneal intrastromal implantation system, for the treatment of KC.


  Patients and methods Top


This interventional, nonrandomized prospective clinical trial was conducted at Benha University Hospital and the Egyptian Academy of Ophthalmology during the period from January 2012 to April 2013. The study included 23 eyes of 23 patients (12 male and 11 female) with KC. The mean age was 21.7 ± 10.9 years (range 13-48 years). Exclusion criteria included evidence of corneal opacity, history of corneal surgery, and corneal thickness less than 360 μm. Informed consent was obtained from all patients after thorough explanation of the treatment approach and surgical procedures with their possible side effects and potential complications. The study was approved by the research ethics committee at the Faculty of Medicine, Benha University. A patient was excluded from the study because of intraoperative suction release during pocket formation, with subsequent failure of MyoRing (Dioptex GmbH, Australia) implantation.

Baseline examination included measurement of uncorrected visual acuity (UCVA) and best-corrected visual acuity (BCVA) in decimal notations, corneal Pentacam imaging (to obtain K1 , K2 , Km , corneal astigmatism, and corneal thickness), slit-lamp examination, full ocular examination, and medical history taking. MyoRing selection was according to the nomogram for Middle East, depending upon the mean K-value [11].

The surgical procedure includes creation of an almost entirely closed intracorneal pocket that is 9 mm in diameter and 300 μm in depth through a small incision of ˜3 mm made using a PocketMaker microkeratome. The device consists of a suction ring [Figure 1], a transparent disposable applanator, which defines the cutting depth, and a microvibrating diamond blade, with its tip following a circular curve of 9 mm in diameter without penetrating the cornea along this path. The MyoRing intracorneal implant is inserted into the corneal pocket through the small incision tunnel and is centered on the corneal reflex. The procedure is self-sealing and no suturing is required. After a minimum of 1 week, refractive data and Pentacam images were obtained. The criterion to perform ring adjustment as an enhancement procedure included increased corneal astigmatism greater than 4 D; the cone can be further 'pushed' out of the center to the degree of patient satisfaction. The pocket was reopened using a spatula and the implant was shifted 0.5 mm toward the apex using of a forceps. This step can be repeated as long as the best possible refractive result is achieved. Any surgical complication was reported. Postoperative follow-up visits were at 1 day, 1 week, and 1, 3, and 6 months postoperatively, with measurement of UCVA and BCVA, Pentacam corneal imaging, and slit-lamp examination.
Figure 1: The mean UCVA and BCVA values throughout the study period. BCVA, best-corrected visual acuity; UCVA, uncorrected visual acuity.

Click here to view



  Results Top


In this clinical trial study visual acuity and Pentacam topography outcomes were analyzed in patients diagnosed with KC, with an analysis of the postoperative time course of MyoRing-mediated clinical changes over 6 months. There was a high statistically significant improvement in the UCVA and BCVA when comparing the preoperative with the postoperative values (P < 0.001). There was a high statistically significant improvement in the mean K1 , K2 , and Km values postoperatively (P < 0.01). There were no statistically significant changes in the mean corneal astigmatism and thinnest location values postoperatively (P > 0.05).

In the current study [Table 1], there was a high statistically significant improvement in the mean UCVA from 0.12 ± 0.17 to 0.5 ± 0.24 at 6 months postoperatively (P < 0.001). There was a significant improvement in UCVA by 4 or higher decimal lines. In addition, there was also a high statistically significant improvement in the mean BCVA from 0.3 ± 0.143 preoperatively to 0.7 ± 0.22 at 6 months postoperatively (P < 0.001). There were significant improvements in BCVA by 5 ≥ 4 decimal lines. The mean K1 value decreased from 48.45 ± 3.79 to 42.56 ± 3.17 postoperatively, with a reduction by about 6.0 D in the first week and minimal changes later on; in addition, the mean K2 value decreased from 54.6.45 ± 3.94 preoperatively to 49.07 ± 3.33 postoperatively, with a reduction by 5.0 D or higher in the first week and minimal increase thereafter. The mean Km value decreased from 51.31 ± 3.56 preoperatively to 45.79 ± 2.97 postoperatively, with a reduction by 6.0 D or higher in the first week and slight increase thereafter. The mean corneal astigmatism improved from 6.01 ± 3.13 to 5.93 ± 2.45 D, and the thinnest corneal location changed from 427.6 ± 39.62 to 422.7 ± 43.83, both at 6 months postoperatively, with no statistical significance (P > 0.05).
Table 1: Shows preoperative and postoperative mean ± SD values of UCVA, BCVA, K1, K2, Km, corneal astigmatism, and thinnest corneal location for the study group (22 eyes) at all time points

Click here to view


Four patients with severe KC underwent position adjustment of the implant (two eyes at 1 week, one each at 1 month and 3 months postoperatively), with 0.5 mm displacement toward the apex of the cone within the pocket. This achieved marked visual, optical, and corneal astigmatic improvement, with no recorded drawbacks or complications. A patient was excluded from the study because of intraoperative suction release during pocket formation with subsequent failure of MyoRing implantation. Ring extrusion was reported in a case 9 months postoperatively due to continuous eye rubbing following vernal keratoconjunctivitis [Figure 1], [Figure 2] [Figure 3],[Figure 4].
Figure 2: Linear representation of the mean K1, K2, and Km values throughout the study period.

Click here to view
Figure 3: Linear representation of the mean corneal astigmatism values throughout the study period.

Click here to view
Figure 4: Linear representation of the mean thinnest location values throughout the study period. Pentacam photos of four patients before and after MyoRing implantation. Pentacam Photos of four patients, two before and two after MyoRing implantation.

Click here to view





  Discussion Top


KC is characterized by progressive thinning of the cornea and is accompanied by ectasia [12]. Abnormalities in the arrangement of collagen fibril layers may be considered an ultrastructural basis for the lack of biomechanical stability [13]. Adding volume to the peripheral cornea by implanting ring segments into circular corneal tunnels may improve visual acuity and reduce central corneal steepening in KC [14]. Such treatment may delay or eliminate the need for corneal grafting and improve the quality of life of affected patients.

In the current study, we used Pentacam because it is considered highly accurate in detecting KC and measuring its corneal optical parameters [9].

As the thinnest area of the cornea is involved in the formation of a pocket at a cutting depth of 300 μm, we excluded KC corneas that were less than 360 μm in thickness from the study, whereas Jabbarvand et al. [15] evaluated the clinical outcomes of CISIS (MyoRing) implantation at two different depths of 250 and 300 μm using femtosecond laser technology. They reported that no differences were observed in visual and refractive outcomes, keratometry, corneal biomechanical characteristics, and higher order aberrations at the 1-year postoperative follow-up. They concluded that an implantation depth of 250 μm has comparable outcomes with the previously applied 300-μm implantation depth. This may be appropriate for selected cases of KC with lower pachymetry.

We used the mechanical Dioptex PocketMaker to create the pocket. Daxer et al. [11] compared the same technique with the femtosecond laser technique (Ziemer LDV) as two different methods of pocket creation for MyoRing implantation. Both groups did not show any statistically significant difference, neither in the KC severity nor in the results. They claimed that both the femtosecond laser technique and mechanical corneal pockets gave the same results in treatment of KC with MyoRing. In the current study, a patient was excluded from ring implantation because of intraoperative suction release during pocket formation.

An important question is whether the creation of a corneal pocket reduces the biomechanical stability of the cornea. As long as cutting is performed in the direction in which the tension inside the tissue unfolds, namely parallel to the collagen fibrils, impairment of the biomechanical stability is not expected. If cutting is performed perpendicular to the tensile forces (as in LASIK, in which the collagen fibrils are intersected along the circumference of the flap), the entire flap tissue no longer fulfills its stabilizing function. This is why LASIK leads to a reduction in biomechanical stability, which in turn may result in keratectasia. Such problems should not occur when using CISIS, as the pocket is almost entirely closed along the circumference, and the only existing cut unfolds more or less parallel to the tensile forces (longitudinal axis of the collagen fibrils); the collagen fibrils are cut through (perpendicular) only in the area of the small incision tunnel.

A smoother corneal surface is an additional advantage of the pocket, as it is not covered by a flap but is closed almost along the entire circumference, together with the inserted full-ring implant keeping higher order aberrations to a minimum [16]. Moreover stability of the implant is due to the transcorneal pressure, which is 'trapped' between the anterior and posterior lamellae, such that displacement of the implant is unlikely to occur. The access to the pocket is self-sealing and does not require suturing. As this is also the case when an implant is introduced between the lamellae, it would be more appropriate to speak of a 'virtual cleft' rather than a pocket. However, in the current work, the MyoRing was extruded in an 18-year-old patient at 9 months postoperatively because of continuous vigorous eye rubbing following vernal keratoconjunctivitis.

The corneal pockets were created at a 300-μm depth, with a diameter of 9 mm. The nomogram for the selection of the appropriate implant diameter and thickness depends only upon the central average K-reading (average Sim K) and is optimized for the Middle Eastern population [11]. In contrast to intracorneal ring segment nomograms, the CISIS nomogram is very simple and does not consider either cone type or cone location or astigmatic axis, etc.

In agreement with the findings of Daxer et al. [17], we found CISIS to be an effective treatment procedure for KC. MyoRing achieved a high statistically significant improvement in both UCVA and BCVA when comparing the baseline values with all postoperative values. It significantly improved corneal topography with a high statistically significant improvement in the mean K1 , K2 , and Km values (P < 0.001), together with nonsignificant changes in the mean corneal astigmatism and thinnest location values.

Few intraoperative and postoperative complications were reported in the current study. However, clinical significance was not sufficient to warrant repositioning, replacement, or removal of the implant. Jabbarvand et al. [18] also reported that the MyoRing offers potential advantages over other existing lines of treatment, being a reversible, minimally invasive, quick, safe, and easy procedure, with no major complications during or after surgery. They explanted the MyoRing in four eyes (4%). The refraction, visual acuity, and corneal topography returned to their preoperative statuses 1 month later in all four eyes.

The CISIS technique allows simple adjustment of the implant position toward optimal placement at any stage after implantation [19]. Because the shape of the cornea is highly irregular in advanced KC, there is no existing theory or method to predict the optimal implant position in a given case before surgery. Therefore, it appears necessary to consider adjustment of the position of an implant after its insertion to achieve optimal results. In the current study, four patients with severe KC underwent position adjustment of the implant at variable postoperative time points by ring displacement toward the apex of the cone. This achieved marked visual, optical, and corneal astigmatic improvement with no recorded drawbacks or complications. Changing the implant position by merely 0.5 mm within the pocket produced a much better result. In conventional corneal implant surgery, the ring segments are closely associated with the position of the circular corneal tunnel, and thus the position of a ring segment may only be changed along the course of the tunnel [20]. The only way to change the position of an implant relative to the center after its insertion is by introducing a flexible full-ring implant into a corneal pocket, as in the technique used in this study. This method also allows positioning of the implant independent of the positioning of the microkeratome.

In the current study, outcomes of visual acuity and Pentacam topography were analyzed in KC patients, with analysis of the postoperative time course of MyoRing-mediated clinical changes over ± 6 months, which is considered a relatively short duration for such a progressive disease [17], and the question of whether CISIS has the potential to improve KC treatment still needs long-term results from a larger number of patients to be answered.

Our results are in agreement with those of Jabbarvand et al. [8], who evaluated the effect of mechanical implantation of MyoRing in 95 eyes of 95 patients with moderate and advanced KC and observed a significant improvement in UCVA and BCVA 1 month after surgery, which was consistent with a significant reduction in sphere (5.74 D) and cylinder (3.02 D). No significant changes were detected in these parameters afterward. Further, significant corneal flattening of a mean value of 9.78 D was obtained. Both spherical myopia and astigmatism showed reduction, but the reduction in myopia was more remarkable than in astigmatism. No significant change in central corneal thickness was observed at any point after the operation. There were no significant differences in visual gain between the two keratometry groups (higher or lower than 53 D) after the procedure. They concluded that MyoRing implantation has an acceptable efficacy profile in moderate and advanced KC.

A great advantage of the current MyoRing technology over ICRS is the postoperative access to all three theoretically possible degrees of freedom (implant thickness, implant diameter, and implant position) for achieving the best possible results compared with only one degree of freedom (implant thickness) in ICRS. In a previous study by Kamal et al., [21], Intacs SK (addition technology) was implanted in 22 KC eyes. They completed 6 months of follow-up. Two Intacs SK segments of 0.45 mm thickness were inserted into the cornea at the steepest axis, aiming to embrace the KC area to achieve maximal flattening. The mean UCVA significantly improved from 0.12 ± 0.13 to 0.38 ± 0.26. The mean BCVA also improved from 0.38 ± 0.28 to 0.62 ± 0.22. The Km reading improved from 51.32 ± 4.12 to 48.44 ± 3.92.

In a previous study on intrastromal corneal ring segment implantation by Daoud et al. [22] in KC patients, the mean UCVA improved from 0.05 preoperatively to 0.3 postoperatively (P < 0.001), BCVA from 0.3 preoperatively to 0.5 postoperatively (P < 0.0010), and the mean average corneal power improved from 52.03 ± 4.49 to 46.95 ± 4.61 D (P < 0.05). No correlation was found between preoperative thinnest corneal pachymetry and postoperative curvature flattening.

The following table shows a simplified comparison between different traditional treatment options as reported by Daxer International Keratoconus Center, Austria.



MyoRing could be considered a malleable line for KC treatment, as it can be safely combined with other therapeutic procedures, achieving additional beneficial effects. Behrouz et al. [23] combined MyoRing with Intacs for managing patients with advanced KC. They implanted a MyoRing in a patient who had undergone a previous Intacs implantation surgery 4 years previously without Intacs explantation and with significant residual refractive error. There were no intraoperative or postoperative complications. After 1 year, the mean keratometric power decreased from 50.3 to 43.6 D, UCVA improved from 20/400 to 20/50, and BCVA improved from 20/200 to 20/30. Daxer et al. [24] combined a new corneal crosslinking method with MyoRing implantation into a 'closed' corneal pocket through a narrow incision tunnel in one surgical session. Riboflavin is instilled into the corneal pocket without the need for epithelial debridement. A case of advanced KC treated in this manner is presented. UCVA increased by seven lines from 0.05 to 0.25, and the average central K-reading decreased by 11 D. The haze seen during the early postoperative period diminished in the first month after surgery.


  Conclusion Top


MyoRing implantation into a corneal pocket through CISIS could be considered an efficient, safe, modifiable, and simple therapeutic option for KC treatment.


  Acknowledgements Top


 
  References Top

1.Rabinowitz YS. The genetics of keratoconus. Ophthalmol Clin N Am 2003; 16 :607-620.  Back to cited text no. 1
    
2. Feder RS. Non inflammatory ectatic disorders. In: Krachmer JH, Mannis MJ, Holland EJ, editors. Cornea. 2nd ed. St. Louis, Missouri: Mosby 2005; 955-966.  Back to cited text no. 2
    
3. Jiménez MR, Rubido JS, Wolffsohn JS. Keratoconus: a review. Contact Lens Anterior Eye 2010; 33 :157-166.  Back to cited text no. 3
    
4. Balasubramanian SA, Pye DC, Willcox MD. Are proteinases the reason for keratoconus?. Curr Eye Res 2010; 35 :185-191.  Back to cited text no. 4
    
5. Srivastava OP, Chandrasekaran D, Pfister RR. Molecular changes in selected epithelial proteins in human keratoconus corneas compared to normal corneas. Mol Vis 2006; 12 :1615-1625  Back to cited text no. 5
    
6. Mackiewicz Z, Määttä M, Stenman M, Konttinen L, Tervo T, Konttinen YT. Collagenolytic proteinases in keratoconus. Cornea 2006; 25 :603-610.  Back to cited text no. 6
    
7. Willoughby CE, Lechner J. Heredity of keratoconus [abstract]. Corneal Dis 2013; 37-52.  Back to cited text no. 7
    
8. Andrea L. Inherited corneal disease: the evolving molecular, genetic and imaging revolution. Clin Experiment Ophthalmol 2005; 33 :303-316.  Back to cited text no. 8
    
9. Belin MW, Holladay JT, Michelson MA, et al. The Pentacam: precision, confidence, results, and accurate KS. J Catract Refract Surg Today 2007; 1 :16-26  Back to cited text no. 9
    
10.Mahmoud H, Venkateswaran RS, Daxer A. Implantation of complete corneal ring in an intrastromal pocket for keratoconus. J Refract Surg 2011; 27 :63-68.  Back to cited text no. 10
    
11.Daxer B, Mahmood H, Daxer A. MyoRing treatment for Keratoconus: Dioptex PocketMaker vs. Ziemer LDV for corneal pocket creation. Int J Kerat Ect Cor Dis 2012; 1 :151-152.  Back to cited text no. 11
    
12.Krachmer JH, Feder RS, Belin MW. Keratoconus and related noninflammatory corneal disorders. Surv Ophthalmol 1984; 28 :293-322.  Back to cited text no. 12
[PUBMED]    
13.Daxer A, Fratzl P. Collagen fibril orientation in the human corneal stroma and its implication in keratoconus. Invest Ophthalmol Vis Sci 1997; 38 :121-129.  Back to cited text no. 13
    
14.Shabayek MH, Alió JL. Intrastromal corneal ring segment implantation by femtosecond laser for keratoconus correction. Ophthalmology 2007; 114 :1643-1652.  Back to cited text no. 14
    
15.Jabbarvand M, Hashemi H, Mohammadpour M, Khojasteh H, Khodaparast M, Hashemian H. Implantation of a complete intrastromal corneal ring at 2 different stromal depths in keratoconus. Cornea 2014; 33 :141-144.  Back to cited text no. 15
    
16.Daxer A. Corneal intrastromal implantation surgery for the treatment of moderate and high myopia. J Cataract Refract Surg 2008; 34 :194-198.  Back to cited text no. 16
[PUBMED]    
17.Daxer A, Mahmoud H, Syrinivasan R, Venkateswaran RS. Intracorneal continuous ring implantation for keratoconus: one-year follow up. J Refract Surg 2010; 36 :1296-1302.  Back to cited text no. 17
    
18.Jabbarvand M, Salamatrad A, Hashemian H, Khodaparast M. Continuous corneal intrastromal ring implantation for treatment of keratoconus in an Iranian population. Am J Ophthalmol 2013; 155 :837-842.  Back to cited text no. 18
    
19.Daxer A. Adjustable intracorneal ring in a lamellar. Pocket for keratoconus. J Refract Surg 2010; 26 :217-221.  Back to cited text no. 19
[PUBMED]    
20.Pokroy R, Levinger S. Intacs adjustment surgery for keratoconus. J Cataract Refract Surg 2006; 32 :986-992.  Back to cited text no. 20
    
21.Kamal O, El-Habak A, Saeed AM, Ananay M. Intacs SK for management of keratoconus. Scientific Events of EOS 2010; 3: 35-38.  Back to cited text no. 21
    
22.Fahd DC, Jabbur NS, Awwad ST. Intrastromal corneal ring segment SK for moderate to severe keratoconus: a case series. J Refract Surg 2012; 28 :701-705.  Back to cited text no. 22
    
23.Behrouz MJ, Hashemian H, Khodaparast M, Rad AS, Shadravan M. Intacs followed by MyoRing implantation in severe keratoconus. J Refract Surg 2013; 29 :364-366.  Back to cited text no. 23
    
24.Daxer A, Mahmoud H, Venkateswaran R. Corneal crosslinking and visual rehabilitation in keratoconus in one session without epithelial debridement: new technique. Cornea 2010; 29 :1176-1179.  Back to cited text no. 24
    


    Figures

  [Figure 1], [Figure 2], [Figure 3], [Figure 4]
 
 
    Tables

  [Table 1]



 

Top
 
 
  Search
 
Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
Access Statistics
Email Alert *
Add to My List *
* Registration required (free)

 
  In this article
Abstract
Introduction
Aim of the work
Patients and methods
Results
Discussion
Conclusion
Acknowledgements
References
Article Figures
Article Tables

 Article Access Statistics
    Viewed1777    
    Printed15    
    Emailed1    
    PDF Downloaded128    
    Comments [Add]    

Recommend this journal


[TAG2]
[TAG3]
[TAG4]